Hull Girder Ultimate Strength of a Ship Using Nonlinear FE Method

Supervisors

Mr. Ionel Darie Dipl.-Ing.(DNV GL SE)

Prof. Patrick Keading (URO)

Dr.-Ing. Thomas Lindemann (URO)

Presented by Hemanand Kalyanasundaram

Evolution of Container ships

Capacity of container vessels

Length of ship

Reference: https://people.hofstra.edu/geotrans/eng/ch3en/conc3en/containerships.html

Motivation and parameters of analyzed ship

Reference:

http://gcaptain.com/mol-comfort-incident-photos/ https://www.researchgate.net/figure/228891097_fig2_Figure-2-Hogging-and-sagging-of-ship-hull

CAD model preparation

FE model preparation – Cargo hold model

Mesh size and considering nonlinearities

Nonlinearities	Analysed area	Other
Geometric	Shell 16 (plates + stiffener web)	Shell 2 (plates)
	Beam (Stiffener flange)	Truss (stiffener)
Material	Elasto-plastic (Bilinear model) E _t =1000 Mpa	Elastic

Reference:

https://www.dynamore.de/de/download/papers/2013-Is-dyna-forum/documents/review-of-shell-element-formulations

Modeling geometrical initial imperfections

- Maximum deflection $\delta_{plate} = \frac{b}{200}$ $\delta_{stiffweb} = \frac{a}{1000}$ •
 - a Frame spacing
 - h Stiffonor spacing

– D Stilleller spacing	

承 Plate Ini 🗆 🗉 🔀				
Input(File Name.xlsx)				
Output(File Name.xlsx)				
OK Cancel				

Imperfection on FE model - Section view

Cargo hold model – Boundary condition and analysis

Nonlinear analysis is solved implicitly using BFGS method in LS-DYNA

Results of cargo hold analysis

Ult. bending moment capacity -Pure Vertical Moment

CURVATURE [1/m]

Results under hogging (without imperfection model)

$$\frac{M_{u-hogg}}{\gamma_M * \gamma_{DB}} = \frac{33764}{1.1 * 1.1} = 27904 \, MNm$$

- Hogging condition is critical.
- Smith method with safety factor 20% conservative.

Preparation of global FE model

Mesh size of ~800 mm

Loading generation for Global FE analysis

- GL Shipload software for load generation.
- Static loading condition Still water loadings
 - 90% of Max. permisible stillwater BM 1.04xE7 KNm [UR S11 A]
 - Draft 14.5 m

Analysed area Cargo hold 6				
Container loadings	4580 Tonnes/Bay			
Bottom balast tanks	60% Fill rate			
Side balast tanks	20% Fill rate			

• Dynamic loadings - Waves loadings

Dynamic Loading Cases	Wave Amplitude [m]	Wave Direction	Ship Velocity [Knots]
Head Sea	6.5	180°	5
Oblique Sea	4.7	120°	5

Head sea case-Maximum hogging

Boundary conditions - Global analysis

Nonlinear analysis is solved implicitly using BFGS method in LS-DYNA

Reference: DNV GL Class giudelines, Finite Element Analysis.

Results of global FE analysis-Ult. bending moment

Conclusion

- Hogging condition is critical in container vessels.
- Smith method provides conservative results for pure VBM.
- Designed container ship is safe under combined loading conditions.